1、离散数学有点难,大学不一定要学。
2、离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。离散的含义是指不同的连接在一起的元素,主要是研究基于离散量的结构和相互间的关系,其对象一般是有限个或可数个元素。离散数学在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程。
3、理工科专业都要学习离散数学,一些文科专业不需要学习离散数学。
离散数学关系的性质
离散数学,关系的性质具体如下:
关系R称为是反对称的;关系R称为是对称的,若属于R,则有属于R;由上面的定义看到,当且仅当 R 的元素都是型时R同时是反对称的和对称的;举几个例子来说明对称或反对称的:设A等于1,2,3,则A 上的关系R1等于是对称的也是反对称的; R2等于是对称的而非反对称的; R3等于是反对称的而非对称的; R4等于既非对称的且非反对称的。离散数学在生活中的应用.
1、离散数学在生活中主要应用于工程领域和计算机领域,最常见的是密码学、通讯、软件工程、人工智能、多媒体技术等;
2、离散数学的范围相当广泛,凡是研究离散量值关系的数学分支都是离散数学,比如代数学的一多半都是离散的,所以离散数学的应用范围也就十分广泛;不过把“离散数学”作为一个整体称呼主要还是因为计算机科学的需要,在数学学科体系中离散数学分属于几个不同的大的分支,所以把离散数学的应用大致限定在计算机机关应用中比较合理;离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。
离散数学中群的势是什么意思
势,是集合论术语,也叫基数,表示集合元素的多少,可以是无穷。群本身也是一个集合,群的势也就是它作为集合的势。