1、斜率k和tan的关系:k=y/x=tanα,斜率是数学、几何学名词,是表示一条直线关于坐标轴倾斜程度的量,它通常用直线与坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
2、斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。如果直线与x轴互相垂直,直角的正切值为tan90°,故此直线不存在斜率。当直线L的斜率存在时,对于一次函数y=kx+b,k即该函数图像的斜率。
斜率是tan吗
由斜率的定义知直线对X轴的倾斜角α的正切值tanα称为该直线的“斜率”,并记作k,k=tanα。所以斜率是tan。
斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。如果直线与x轴互相垂直,直角的正切值无穷大,故此直线不存在斜率。当直线L的斜率存在时,对于一次函数y=kx+b,(斜截式)k即该函数图像的斜率。
tan120度的斜率是多少
tan120度的斜率是负的根号3。tan120°=sin120°÷cos120°=-sin(180-120)°÷cos(180-120)°=-sin60°÷cos60°=-√3。
斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。
椭圆离心率e和斜率k的关系
在双曲线中,e=c/a,而a^2+b^2=c^2,所以b/a=√(c^2-a^2)/a=√(c^2/a^2-1)=√(e^2-1),所以e越大,b/a也越大,即渐近线y=±b/a*x的斜率k的绝对值越大,这时双曲线的形状就从扁狭逐渐变得开阔,由此可知,双曲线的离心率越大,它的开口就越阔。